Families as Roommates

Todd Schoellman (Clemson University) Michèle Tertilt (Stanford University)

November 2007

Motivation

- 1. Large decrease in household size over last 150 years.
 - \longrightarrow What can explain this decline?
- 2. Typical analysis: concentrate on specific change in living arrangements:
 - increasing marriage age
 - decreasing fertility
 - increasing divorce rates
 - decline of extended family
- 3. We believe that these are different manifestations of the same phenomenon: *people can afford to live in smaller households*.
- 4. Important for policy analysis: decline in family size not necessarily a concern, but simply an efficient response to growing incomes.

Outline of the Talk

- 1. Some facts: Changes in household size from U.S. Census data.
- 2. A model of household size choice.
- 3. We use 1995-2000 data to calibrate the model.
- 4. Use model to 'predict' changes in household size 1850-2000.
- 5. Result: increase in income can account for about 30% of the observed decline in household size.
- 6. Adding Children: model can account for entire HH size decline.

Various Measures of Household Size (excluding group quarters) average across all people

Average Household Size by Income Quintiles, 2000, 30-34 year old persons

	30-34 year old persons						
Q	kids	adults	total	non-family			
1	1.69	2.44	4.13	0.32			
2	1.55	2.31	3.86	0.23			
3	1.40	2.14	3.54	0.16			
4	1.17	1.99	3.17	0.11			
5	0.96	1.92	2.88	0.09			

Summary of the Data

- An average person in 1850 lived in household of size 6.8.
 An average person in 2000 lives in household of size 3.5.
- 2. Decrease has occurred at *all* points in the life-cycle.
- 3. This is *not* simply a decrease in fertility.
- 4. Decline in all types of household members.
- 5. Richer people live in smaller households.

Our Story: Substitution from HH public to private goods

- People consume two types of goods:
 - household public goods (living room, TV, garden)
 - pure private goods (dining out, plane trip, movie tickets)
- Benefit of living together: Public goods.
- Time cost of forming/maintaining a HH.
- As people get richer (GDP p.c. \uparrow)
 - They want to consume relatively more private goods.
 - Benefit from living together declines endogenously.
 - People choose to live in smaller households.

The Model

- Life-cycle model: a = age.
- OLG: $\tau = \text{birth cohort.}$
- Finite number of types in each cohort: i.
- Efficiency units of time: $z(\tau, a, i)$.
- Household specific public good, h.
- Private good, v.
- Household size, s.
- Age-specific household creation/maintenance (time) costs: $B_a z$.
- Exogenous increase in productivity z over time.

$$\max_{s,v,h} \qquad \sum_{a=0}^{\bar{a}} \beta^a \left[\frac{h(a)^{1-\sigma}}{1-\sigma} + \omega \frac{v(a)^{1-\phi}}{1-\phi} \right]$$

$$s.t. \qquad \sum_{a=0}^{\bar{a}} p(\tau+a) \left[\frac{h(a)}{s(a)} + v(a) \right]$$

$$\leq \sum_{a=0}^{\bar{a}} p(\tau+a) [1 - B_a(s(a) - 1)] z(\tau, a, i)$$

$$s(a) \ge 1 \quad \forall a$$

$$v(a), h(a) > 0 \quad \forall a$$

Notation: $s(\tau, a, i)$ is optimal household size of agent born in τ of age a and type i.

Families as Roommates

- This is *not* a dynamic theory of family formation.
- There is no cost of changing HH size from one period to the next (e.g. no cost to get divorced).
- Instead: *every* period people can choose who to live with.
- Household members = roommates who share the costs of the public goods, but impose a cost of living together on each other (e.g. time spend arguing about who washes the dishes).
- Too simple?
- Well, let's see how far one get get with such a simple theory...

Equilibrium

An equilibrium for this economy is an allocation $\{s(\tau, a, i), v(\tau, a, i), h(\tau, a, i)\}_{\tau, i}$ and prices $\{p(t)\}$ such that:

- 1. Each agent type (τ, i) maximizes utility subject to the constraints.
- 2. Markets clear every period:

$$\sum_{\{(\tau,a,i)|\tau+a=t\}} \begin{bmatrix} \frac{h(\tau,a,i)}{s(\tau,a,i)} + v(\tau,a,i) \end{bmatrix} \\ = \sum_{\{(\tau,a,i)|\tau+a=t\}} [1 - B_a(s(\tau,a,i) - 1)]z(\tau,a,i)$$

Household Size and Public Good Share

Result 1 $\frac{ds}{dz} < 0$ if and only if $\frac{d(\frac{h}{z})}{dz} < 0$. *Proof.* From the FOCs: $\frac{h}{z} = Bs^2$.

Household Size in the Cross-section

Result 2 Suppose that $z(\tau, a, i) = z(\tau, i)$ for all a. Assume $\sigma > 0.5, \sigma > \phi$. Then $z(\tau, i) > z(\tau, j)$ implies that $s(\tau, a, i) \leq s(\tau, a, j)$ for all a, with strict equality if $1 < s(\tau, a, i)$.

Household Size Across Cohorts

Result 3 Suppose $B_a = B$ for all a and that for all i, $z(\tau, a, i) = z(\tau, i)$ for all a.

a) If $\sigma > 0.5$, $\phi < \sigma$, then $z(\tau', i) > z(\tau, i)$ implies that $s(\tau', a, i) < s(\tau, a, i)$ for all (a, i).

b) If $\sigma > 0.5$, $\phi > \sigma$, then $z(\tau', i) > z(\tau, i)$ implies that $s(\tau', a, i) > s(\tau, a, i)$ for all (a, i).

Empirical Strategy

- Our theory proposes that if $\sigma > \phi$, then higher incomes lead to a larger private goods share and smaller households.
- How do we know if $\sigma > \phi$?
- We use cross-sectional data (from CEX) to test $\sigma \gtrless \phi$ and to calibrate our model.
- We then project the model back to 1850 to see how important this channel is in explaining the falling household size.

Consumer Expenditure Survey

- 125,000 households total, 1980-2001.
- Use 1995-2000 as a cross-section.
- Detailed expenditure data, plus income data.
- Public goods (h) = housing, utilities, books, house services.
 Private goods (sv) = food, health care, education, clothing, transport, personal services, entertainment.
- Exclude most durable goods.

CEX Data: s, v and h by Income Quintiles

- Break people into five income types in model and data.
- In data we identify these with five income quintiles.

quintile	HH size	h	v	h/v
1	4.33	$1,\!600$	534	3.00
2	3.90	$2,\!046$	741	2.76
3	3.56	$2,\!360$	929	2.54
4	3.07	$2,\!658$	$1,\!166$	2.28
5	2.32	$3,\!200$	$1,\!757$	1.82

Calibration Strategy

- Consider agents in 5-year age groups: 0-4,5-9, ..., 75-79 (16 groups).
- 19 parameters: $\sigma, \phi, \omega, \{B_a\}$.
- 19 Moments to match.

Average h/v ratio for 40-49 year-old in 2000	2.48	ω
Income elasticity of h/v for 40-49 year-old in 2000	-0.24	σ,ϕ
Standard intertemporal elasticity of substitution	0.50	σ,ϕ
Household size for age groups from 2000 Census		$\{B_a\}$

• Elasticity is defined between the five income quintiles.

Calibration Results

• $\sigma = 1.91 > \phi = 1.66, \quad \omega = 0.057$

age	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39
B_a	6.7%	6.3%	6.3%	7.0%	9.8%	10.4%	9.8%	8.8%
age	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79
B_a	9.1%	10.4%	12.7%	14.8%	16.0%	17.2%	18.4%	20.4%

Time Series Projection

- We match 2000 levels of household size and relative consumption.
- We match the 2000 elasticity of relative consumption with respect to income.
- Now we project the model backwards.
 - We use GDP/capita Y_t
 - Assume relative incomes are constant over time (z_i) .
 - Then $z(\tau, a, i) = z_i Y_{t+a}$.

The Model vs. NIPA Data

Adding Children

- 1. So far, the model can explain about 20-30% of the decline in household size.
- 2. We believe this channel is also relevant for decision to have children.
- 3. Modify the model to include children:
 - Adults care about children in household.
 - Children also consume private and public goods.
 - Richer parents → more private goods for their kids and fewer children.
 - A version of the "quantity-quality" trade-off.

Adults vs. Children in the Data: 3 Interesting Features

- Both, the number of children and the number of adults in a household has fallen over the last 150 years.
- The decline in the number of children is relatively larger.
- Asymmetry in timing: Most of the fall in child household size occurred before 1940, while most of the decline in adult HH size occurred after 1940.

Model with Children

$$\max_{s,k,h,v,v^{k}} \sum_{a=0}^{\bar{a}} \beta^{\tau+a} U(a)$$
$$U(a) = \omega \frac{v(a)^{1-\phi}}{1-\phi} + \frac{h(a)^{1-\sigma}}{1-\sigma} + \delta k(a)^{\alpha} \left\{ \Omega + \frac{h(a)^{1-\sigma}}{1-\sigma} + \omega \frac{(v^{k}(a))^{1-\phi}}{1-\phi} \right\}$$
$$s.t. \sum_{a=0}^{\bar{a}} p(\tau+a) \left[\frac{h(a)}{s(a)} + v(a) + \frac{v^{k}(a)k(a)}{s(a)} \right]$$

$$\leq \sum_{a=0}^{\bar{a}} p(\tau+a) z(\tau,a,i) [1 - B_a(s(a) - 1) - B_a^k k(a)]$$

Empirical Strategy

- CEX does not distinguish between children's and adult consumption \rightarrow no data on h, v.
- Instead: pick parameters to match some time series moments.

Calibration: Data Targets

	Kids	Adults
1850 Household Size	3.38	3.36
Fall, 1850-1940	-51.70%	-8.67%
Fall, 1940-2000	-34.27%	-27.30%
Quintile [*] 1, 2000	1.42	2.63
Quintile [*] 2, 2000	1.24	2.55
Quintile [*] 3, 2000	0.99	2.35
Quintile $4, 2000$	0.77	2.22
Quintile $5, 2000$	0.53	2.13

* among 25-29 year old adults.

Cross-Section: HH size by (per adult) income quintiles

Intuition for Asymmetry in Adults vs. Children

- Note: children are also a public good
- As incomes go up, people choose less public consumption (h)and more private goods (v, v^k) .
- This makes children more costly. So k falls.
- Adults share the cost of h and kv^k .
- Initially kv^k does not fall much, which makes it beneficial to have large adult households (to share kv^k expenditures).
- Eventually k has fallen so much that kv^k falls and adult household size falls too.

Expenditure Fractions (Quintile 1)

Conclusion

- Data Household size decline along many different margins: adults, children, non-family living together, different ages, ...
- This paper Explores possibility of one common driving force behind these (seemingly unrelated) changes.
- Story
 - Income growth leads people to want to buy more private goods (health, movie tickets, restaurant meals, ...).
 - This endogenously decreases the benefits of (a) sharing a household with other adults and (b) having children.
- Model does fairly well in replicating data quantitatively.

Figure 1: Time Costs of Family Members

Calibrated Parameters

Parameter	α	δ	ω	σ	ϕ	Ω
Value	0.5521	0.0795	1.68×10^{-5}	9.5176	0.6592	0.0011

First Order Conditions

$$v(\tau, a, i): \qquad \beta^a \omega v(\tau, a, i)^{-\phi} = \lambda(\tau, i) p(\tau + a)$$

$$h(\tau, a, i): \qquad \beta^a h(\tau, a, i)^{-\sigma} = \frac{\lambda(\tau, i)p(\tau + a)}{s(\tau, a, i)}$$

$$s(\tau, a, i): \qquad B_a z(\tau, a, i) = \frac{h(\tau, a, i)}{s(\tau, a, i)^2}$$

Relationship between h, v and s

$$h(\tau, a, i) = B_a z(\tau, a, i) s^2(\tau, a, i)$$

$$v(\tau, a, i) = \left(\frac{\omega h^{\sigma}(\tau, a, i)}{s(\tau, a, i)}\right)^{1/\phi}$$

$$s(\tau, a, i) = \left(\frac{p(\tau)}{p(\tau+a)}\beta^a\right)^{\frac{1}{2\sigma-1}} \left(\frac{B_0 z(\tau, 0, i)}{B_a z(\tau, a, i)}\right)^{\frac{\sigma}{2\sigma-1}}$$