Gender Gaps in Completed Fertility

Erica Field Vera Molitor Alice Schoonbroodt Michèle Tertilt

EEA Congress

Mannheim, 2015

- A large literature exists analyzing fertility pattern and trends
- Based on FEMALE fertility data
 - Most surveys ask only women about their child-bearing.
- Yet, for any couple, male & female fertility need not coincide:
 - Polygyny
 - Divorce & remarriage
 - Death & remarriage
- Even in aggregate fertility may be different by gender!
 → Possible because of population growth.

- Does it matter whose fertility is considered?
- Would "fertility facts" change if one used male fertility instead?

Project is a fact finding mission! \rightarrow input into other studies.

- Well-documented that men desire more children than women.
 → Does this necessarily lead to conflict?
 Or does preference gap translate into gap in realized fertility?
- ② Investments in children depend heavily on resources of fathers. \rightarrow thus it matters how children are spread across men.
- Particularly interesting/important in polygynous countries.
 → focus on Africa.

- How to compare fertility of men and women?
- Multiple possibilities.
- We do it by birth cohort. i.e. compute completed fertility for women born in year x and for men born in the same year.
- Data issues: men complete fertility later in life than women, so take men aged 50-60. However, women are in survey only up to age 49.
 → solution: compare men and women from different surveys: 10 years apart. Gives us same birth cohorts.

- Recent waves of the Demographic and Health Surveys (DHS) include fertility questions for men.
- Select countries based on male sample size (and appropriately spaced female surveys).
- Benin, Burkina Faso, Ethiopia, Madagascar, Malawi, Rwanda, Zambia, Zimbabwe.
- Surveys between 1993 and 2011.

	Cohort	DHS		Age		Sample Size	
		F	M	F	М	F	M
Benin	1947-51	1996	2006	44-49	54-59	442	211
Burkina Faso	1951-55	1998/99	2010	42-48	54-59	478	350
Ethiopia	1952-56	2000	2011	43-48	54-59	1194	541
Madagascar	1949-53	1997	2008/09	43-48	55-59	500	387
Malawi	1950-54	2000	2004/05	45-49	50-54	766	175
Rwanda	1951-55	2000	2010	44-49	54-59	727	255
Zambia	1948-52	1996	2007	43-48	54-59	505	218
Zimbabwe	1951-55	1999	2005/06	43-48	49-54	414	332

+ additional cohorts for some countries

- Male average fertility >> female average fertility.
- Omega Male fertility inequality >> female inequality.
- $\textbf{ § Fertility preference gap} \rightarrow \text{realized gap}.$
- Demographic transition started earlier and was steeper from male perspective.

Country	Cohort	Mean #	Children	Gap
		Women	Men	
Benin	1947-51	7.3	11.6	4.3***
Burkina Faso	1951-55	7.5	10.2	2.8***
Ethiopia	1952-56	7.1	8.4	1.3***
Madagascar	1949-53	7.0	6.8	-0.2
Malawi	1950-54	7.0	8.7	1.7***
Rwanda	1951-55	7.3	8.6	1.3***
Zambia	1948-52	7.7	8.5	0.8**
Zimbabwe	1951-55	6.1	6.8	0.7***
Zambia Zimbabwe	1948-52 1951-55	7.7 6.1	8.5 6.8	0.8** 0.7***

Example: Burkina Faso

- f_t^m male fertility, cohort born in t.
- M_t^k size of male cohort born in t at age k.
- Analog for women: f_t^w , W_t^k .
- Assume men have children at age k and age gap g.
- Fertility "market clearing" in year t + k:

$$f_t^m M_t^k = f_{t+g}^w W_{t+g}^{k-g}$$

• Add constant pop growth (γ) and mortality (π_w, π_m).

$$\frac{f_t^m}{f_{t+g}^w} = \frac{W_{t+g}^{k-g}}{M_t^k} = \left(\frac{1-\pi_w}{1-\pi_m}\right)^k \left(\frac{1+\gamma}{1-\pi_w}\right)^g \left(\frac{W_t^0}{M_t^0}\right)$$

Country	Cohort	Se)	
		Women	Men	
Benin	1947-51	2.776	6.021	
Burkina Faso	1951-55	2.632	5.251	
Ethiopia	1952-56	2.812	3.503	
Madagascar	1949-53	3.768	3.823	
Malawi	1950-54	3.167	3.660	
Rwanda	1951-55	2.503	3.254	
Zambia	1948-52	3.004	4.643	
Zimbabwe	1951-55	2.875	3.768	

Example: Burkina Faso

Finding 3: correlation btw desired and actual gap

Finding 4: Demographic Transition Steeper for Men

Average Fertility

- Used unique data on male completed fertility.
- Main findings:
 - Completed fertility of men is higher than of women. (and yes, this is possible in the aggregate!)
 - Fertility inequality much higher for men than women. (but differences vary across countries)
 - A novel explanation for the gender gap in desired fertility. (and some measurement of how important this is)
 - Size/speed of demographic transition depends on gender considered.
- Lessons for theory: more 2-parent models needed!