
Introduction to Scientific Computing

Vahe Krrikyan/Johannes Pfeifer

University of Mannheim

pfeifer@uni-mannheim.de

May 20, 2016

Programming Introduction Motivation Best Practices Conclusion References 1/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Figure: https://xkcd.com/1513/

Programming Introduction Motivation Best Practices Conclusion References 2/25cba

https://xkcd.com/1513/
http://creativecommons.org/licenses/by-sa/4.0/legalcode


Outline

1 Introduction

2 Motivation

3 Best Practices

4 Conclusion

Programming Introduction Motivation Best Practices Conclusion References 3/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Introduction

This presentation is based on Greg Wilson et al. (2014). “Best
Practices for Scientific Computing”. In: PLoS Biology 12.1,
e1001745. doi: 10.1371/journal.pbio.1001745

Programming Introduction Motivation Best Practices Conclusion References 4/25cba

http://dx.doi.org/10.1371/journal.pbio.1001745
http://creativecommons.org/licenses/by-sa/4.0/legalcode


Introduction

Nowadays scientific work almost impossible without scientific
computing software
Software as important as hardware in modern science and economics
in particular
Coding is an integral part of economic research, unless purely
theoretical (even then software helps checking algebra)
Development of Information Technologies, a driver for more
sophisticated research techniques

Programming Introduction Motivation Best Practices Conclusion References 5/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Introduction

Scientist spend 30% or more of their time on developing their own
software (Hannay et al., 2009; Prabhu et al., 2011)
Thus research quality and results highly dependent on developed
software
E.g. Managing and analyzing large amounts of data, running
sophisticated regressions or quantitative experiments
Even running simple OLS regressions requires coding
Examples of programming languages used in economics: Matlab,
Stata, Eviews, R, Fortran, Python, Julia, etc.

Programming Introduction Motivation Best Practices Conclusion References 6/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Motivation

As already mentioned, significant time of research spent on
developing software
Thus knowing how to do it right is as important as learning
programming.

Helps to get more reliable results
Decreases the amount of time needed to develop software and boosts
the optimality of work
Allows for replicability (which increases the validity of the results)

Mistakes in codes not only dangerous for the quality of the project,
but also for those citing it (Domino Effect)

Programming Introduction Motivation Best Practices Conclusion References 7/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Motivation

An example for the consequences of mistakes in coding:
Carmen M. Reinhart and Kenneth S. Rogoff (2010). “Growth in a
Time of Debt”. In: American Economic Review 100.2, pp. 573–78.
doi: 10.1257/aer.100.2.573

Herndon, Ash, and Pollin, (2014): “We replicate Reinhart and Rogoff
(2010) and find that coding errors, selective exclusion of available
data, and unconventional weighting of summary statistics lead to
serious errors that inaccurately represent the relationship between
public debt and GDP growth among 20 advanced economies in the
post-war period”.
We wouldn’t like to be in a situation like this, would we?

Programming Introduction Motivation Best Practices Conclusion References 8/25cba

http://dx.doi.org/10.1257/aer.100.2.573
http://creativecommons.org/licenses/by-sa/4.0/legalcode


Summary of Best Practices

A list of suggestions relevant for scientific work in the field of economics
1 Write a program for people, not computers
2 Let the computer do the work
3 Make incremental changes
4 Don’t repeat yourself
5 Plan for mistakes
6 Optimize software only after it works correctly
7 Document design and purpose, not mechanics
8 Collaborate

Programming Introduction Motivation Best Practices Conclusion References 9/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


1.Write a Program for People

Figure: http://phdcomics.com/comics/archive.php?comicid=1690
Programming Introduction Motivation Best Practices Conclusion References 10/25cba

http://phdcomics.com/comics/archive.php?comicid=1690
http://creativecommons.org/licenses/by-sa/4.0/legalcode


1.Write a Program for People

Software produced by researchers is intended not only to produce
correct output, but also be understandable for others and for the
researcher himself when he gets back to the code months later
Others need to understand the codes so that they can replicate the
project.
Break the program into separate functions that conduct a separate
task - easier for others to understand the program as they concentrate
on a limited amount of information at a time.
Be consistent with naming the variables: so they are distinctive and
informative. Don’t name variables randomly.
Make code style and formatting consistent: e.g. k t ss and cSS t
(c t ss) inconsistent, harder to read and understand.

Programming Introduction Motivation Best Practices Conclusion References 11/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


2.Let the Computer Do The Work

Automate steps to minimize errors from manual work.
E.g. when working with data don’t cleanse it manually, write a script
that loads the raw data automatically and does the cleansing. Useful
for understanding how the data has been manipulated.

Save recent commands. E.g. Matlab has command history - track
your previous steps and save them.
If different software (e.g. Fortran, C, Matlab) is used and interfaced,
automate workflows by using a build tool instead of running separate
programs and codes manually.

Programming Introduction Motivation Best Practices Conclusion References 12/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


3. Make Incremental Changes

Work in small steps, understand each step and check its correctness.
Planning huge amount of work in advance or making sizable changes
in the codes not efficient:

This strategy prone to making mistakes (due to cognitive constraints)
Debugging - more complicated
Program requirements may change, so this method not flexible

Use a version control system (VCS) especially when collaborating
with others

Keeps track of all changes in codes, the authors of the changes, their
comments.
Alerts in case of simultaneous updates of the codes by several
co-authors (common Dropbox problem)
Allows restoring earlier states of the project easily

Put all relevant files in the VCS. Makes the project easier to
reproduce.

Programming Introduction Motivation Best Practices Conclusion References 13/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Version Control

Git (https://git-scm.com/) is probably the main free open-source
version control software
The are good Guided User Interfaces available, e.g.
https://tortoisegit.org/ for Windows
Git interfaces easily with Github https://github.com/, one of the
largest software depositories

Programming Introduction Motivation Best Practices Conclusion References 14/25cba

https://git-scm.com/
https://tortoisegit.org/
https://github.com/
http://creativecommons.org/licenses/by-sa/4.0/legalcode


4. Don’t Repeat Yourself

A single representation for every piece of data in the system. I.e. each
parameter defined only once, each data used once and given a unique
ID.
Don’t simply copy and paste codes, modularize them: combine them
into small groups that implement a single function (e.g. functions in
Matlab)
Re-use codes instead of rewriting them. Relevant when using C or
Fortran, where only simple functions are preprogrammed, others need
to be programmed manually.

Programming Introduction Motivation Best Practices Conclusion References 15/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


5.Plan for Mistakes

Mistakes done even by professionals
According to (McConnell, 2004) and NASA:

Industry average experience is about 1 to 25 errors per 1000 lines of
code for delivered software
Applications Division at Microsoft experiences about 10 to 20 defects
per 1000 lines of code during in-house testing, and 0.5 defect per 1000
lines of code in released product
Space-shuttle software has achieved a level of 1 defect in 500,000

Programming Introduction Motivation Best Practices Conclusion References 16/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


5.Plan for Mistakes

Difficult challenge to identify them!
Assertions a good diagnostic tool, e.g. Matlab assert command that
checks whether a particular statement holds true at given part of the
code.
Assertions useful as debugging is simplified. Program halts if
something goes wrong and assertions highlight the problem.
Use tests to evaluate your codes. Compare output with simplified
cases or results of earlier trusted programs, check whether the output
is consistent with your expectations, e.g. plot the output and look at
its shape.
Use a debugger to identify the mistakes. Matlab allows for creating
breakpoints that help to implement only some part of the code.

Programming Introduction Motivation Best Practices Conclusion References 17/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


6.Optimize Software Only After It Works Correctly

Wilson et al., (2014): “The most productive way to make code fast is
to make it work correctly”.
First make the code work, then check for the possibilities to speed it
up.
So, write code in a high-level language (like Matlab), then switch to
lower-level languages (e.g. Fortran) if computational time can be
significantly decreased.
Even if the optimality of coding with a low level language is known ex
ante, the results from coding with a high-level language can serve as
a test.

Programming Introduction Motivation Best Practices Conclusion References 18/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


7.Document Design and Purpose, Not Mechanics

Replicability of a project highly dependent on its documentation, it is
also useful when new co-authors added to the project
Document the reasons and interface (what it does) for a particular
code, its inputs and outputs rather than explaining its mechanics
If a particular part of a code needs substantial explanation, refactor
the code and explain parts of it rather than writing a full paragraph
explaining how it works

Programming Introduction Motivation Best Practices Conclusion References 19/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


8.Collaborate

Card and DellaVigna, (2013): ”[...] the number of authors per paper
[in one of the top-5 journals] has increased from 1.3 in 1970 to 2.3 in
2012”
Collaboration very important for efficient coding as it allows cross
checks – an optimal way for noticing and discarding mistakes.
Pair programming an extreme way of cooperation when one is coding,
and the other checking for mistakes and keeping in mind the larger
picture.
In economics high share of quantitative papers co-authored.

Programming Introduction Motivation Best Practices Conclusion References 20/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Useful Resources

Martin Gaudecker’s course materials at http://wiwi.uni-bonn.de/
gaudecker/teaching/prog_econ_slides.html

Software Carpentry at https://software-carpentry.org/

Programming Introduction Motivation Best Practices Conclusion References 21/25cba

http://wiwi.uni-bonn.de/gaudecker/teaching/prog_econ_slides.html
http://wiwi.uni-bonn.de/gaudecker/teaching/prog_econ_slides.html
https://software-carpentry.org/
http://creativecommons.org/licenses/by-sa/4.0/legalcode


Conclusion

As already mentioned, organization and optimization of programming
procedure highly efficient as it:

decreases incidence of mistakes, and those made - easier to find,
increases possibility to replicate the project, making it more reliable,
makes time spent on writing codes much more efficient.

Thus as everything else, programming doesn’t just need to be done, it
needs to be done correctly.
Follow the rules, optimize your time, make it easier for you and for
others.

Programming Introduction Motivation Best Practices Conclusion References 22/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Best Practices

Thank you for your attention!

Programming Introduction Motivation Best Practices Conclusion References 23/25cba

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Bibliography I

Card, David and Stefano DellaVigna (2013). “Nine Facts about Top
Journals in Economics”. In: Journal of Economic Literature 51.1,
pp. 144–61.

Hannay, Jo Erskine et al. (2009). “How Do Scientists Develop and Use
Scientific Software?” In: Proceedings of the 2009 ICSE Workshop on
Software Engineering for Computational Science and Engineering.
SECSE ’09. Washington, DC, USA: IEEE Computer Society, pp. 1–8.
doi: 10.1109/SECSE.2009.5069155.

Herndon, Thomas, Michael Ash, and Robert Pollin (2014). “Does high
public debt consistently stifle economic growth? A critique of Reinhart
and Rogoff”. In: Cambridge Journal of Economics 38.2, pp. 257–279.
doi: 10.1093/cje/bet075. eprint: http:
//cje.oxfordjournals.org/content/38/2/257.full.pdf+html.

McConnell, Steve (2004). Code Complete. 2nd ed. Microsoft Press.

Programming Introduction Motivation Best Practices Conclusion References 24/25cba

http://dx.doi.org/10.1109/SECSE.2009.5069155
http://dx.doi.org/10.1093/cje/bet075
http://cje.oxfordjournals.org/content/38/2/257.full.pdf+html
http://cje.oxfordjournals.org/content/38/2/257.full.pdf+html
http://creativecommons.org/licenses/by-sa/4.0/legalcode


Bibliography II

Prabhu, Prakash et al. (2011). “A Survey of the Practice of
Computational Science”. In: Proceedings 24th ACM/IEEE Conference
on High Performance Computing, Networking, Storage and Analysis. SC
’11. Seattle, Washington: ACM, 19:1–19:12. doi:
10.1145/2063348.2063374.

Reinhart, Carmen M. and Kenneth S. Rogoff (2010). “Growth in a Time of
Debt”. In: American Economic Review 100.2, pp. 573–78. doi:
10.1257/aer.100.2.573.

Wilson, Greg et al. (2014). “Best Practices for Scientific Computing”. In:
PLoS Biology 12.1, e1001745. doi: 10.1371/journal.pbio.1001745.

Programming Introduction Motivation Best Practices Conclusion References 25/25cba

http://dx.doi.org/10.1145/2063348.2063374
http://dx.doi.org/10.1257/aer.100.2.573
http://dx.doi.org/10.1371/journal.pbio.1001745
http://creativecommons.org/licenses/by-sa/4.0/legalcode

	Introduction
	Motivation
	Best Practices
	Conclusion

